

Course-6A: Numerical Methods

(Skill Enhancement Course (Elective), 5 credits)

1. Learning Outcomes:

Students after successful completion of the course will be able to Max Marks: 100

1. understand the subject of various numerical methods that are used to obtain approximate solutions
2. Understand various finite difference concepts and interpolation methods.
3. Work out numerical differentiation and integration whenever and wherever routine methods are not applicable.
4. Find numerical solutions of ordinary differential equations by using various numerical methods.
5. Analyze and evaluate the accuracy of numerical methods.

II. Syllabus :(Hours: Teaching: 75 (incl. unit tests etc. 05), Training: 15)

Unit – 1: Finite Differences and Interpolation with Equal intervals (15h)

1. Introduction, Forward differences, Backward differences, Central Differences, Symbolic relations, nth Differences of Some functions,
2. Advancing Difference formula, Differences of Factorial Polynomial, Summation of Series.
3. Newton's formulae for interpolation. Central Difference Interpolation Formulae.

Unit – 2: Interpolation with Equal and Unequal intervals (15h)

1. Gauss's Forward interpolation formulae, Gauss's backward interpolation formulae, Stirling's formula, Bessel's formula.
2. Interpolation with unevenly spaced points, divided differences and properties, Newton's divided differences formula.
3. Lagrange's interpolation formula, Lagrange's Inverse interpolation formula.

Unit – 3: Numerical Differentiation (15h)

1. Derivatives using Newton's forward difference formula, Newton's back ward difference formula,
2. Derivatives using central difference formula, Stirling's interpolation formula,
3. Newton's divided difference formula, Maximum and minimum values of a tabulated function.

Unit – 4: Numerical Integration (15h)

1. General quadrature formula one errors, Trapezoidal rule,
2. Simpson's 1/3 – rule, Simpson's 3/8 – rule, and Weddle's rules,
3. Euler – McLaurin Formula of summation and quadrature, The Euler transformation.

Unit – 5: Numerical solution of ordinary differential equations (15h)

1. Introduction, Solution by Taylor's Series,
2. Picard's method of successive approximations,
3. Euler's method, Modified Euler's method, Runge – Kutta methods.

III. References:

1. S.S.Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India Pvt. Ltd., New Delhi-110001, 2006.
2. P.Kandasamy, K.Thilagavathy, Calculus of Finite Differences and Numerical Analysis. S. Chand & Company, Pvt. Ltd., Ram Nagar, New Delhi-110055.
3. R.Gupta, Numerical Analysis, Laxmi Publications (P) Ltd., New Delhi.
4. H.C Saxena, Finite Differences and Numerical Analysis, S. Chand & Company Pvt. Ltd., Ram Nagar, New Delhi-110055.
5. S.Ranganatham, Dr.M.V.S.S.N.Prasad, Dr.V.Ramesh Babu, Numerical Analysis, S. Chand & Company Pvt. Ltd., Ram Nagar, New Delhi-110055.
6. Web resources suggested by the teacher and college librarian including reading material.

IV. Co-Curricular Activities:

A) Mandatory:

1. **For Teacher:** Teacher shall train students in the following skills for 15 hours, by taking relevant outside data (Field/Web).
 1. Applications of Newton's forward and back ward difference formulae.
 2. Applications of Gauss forward and Gauss back ward, Stirling's and Bessel's formulae.
 3. Applications of Newton's divided differences formula and Lagrange's interpolation formula.
 4. Various methods to find the approximation of a definite integral.
 5. Different methods to find solutions of Ordinary Differential Equations.